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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 4
Solutions by J. Barber and T. Bunn

Reading:
105 Notes 6.1-6.2, 3.1-3.3
Hand & Finch 3.1-3.3

1.
Generalize the Euler equation

d

dt

∂L
∂ẏ

=
∂L
∂y

to the case in which L is a function of t,
y, ẏ, and ÿ. Derive the new Euler equa-
tion for this case. Assume that y(t1), y(t2),
and ẏ(t1), ẏ(t2) are not varied, i.e. both the
value and the slope of y are fixed at each end-
point.
[Hint: Compared to the derivation of the usual
Euler equation, when you calculate the variation
of the action J with the parameter α, you will
have an extra term in the integrand. Integrate
that term by parts twice.]
Solution:

J =
∫ t2

t1

L(y, ẏ, ÿ, t)dt

As usual, suppose y = y(t, α), where α is a pa-
rameter, and suppose y(t, α = 0) minimizes J.
Thus:

dJ

dα
=

∫ t2

t1

(
∂L
∂y

dy

dα
+

∂L
∂ẏ

dẏ

dα
+

∂L
∂ÿ

dÿ

dα

)
dt = 0

Integrate the second term once by parts:∫ t2

t1

∂L
∂ẏ

d

dt

(
dy

dα

)
dt

=
∂L
∂ẏ

dy

dα

∣∣∣t2
t1
−

∫ t2

t1

dy

dα

d

dt

(
∂L
∂ẏ

)
dt

= 0 −
∫ t2

t1

dy

dα

d

dt

(
∂L
∂ẏ

)
dt ,

where the ‘0’ follows from the endpoints being
fixed. Now integrate the second term by parts

twice:

∫ t2

t1

∂L
∂ÿ

dÿ

dα
dt

=
∂L
∂ÿ

dẏ

dα

∣∣∣t2
t1
−

∫ t2

t1

d

dt

(
∂L
∂ÿ

)
d

dt

(
dy

dα

)
dt

=
∂L
∂ÿ

dẏ

dα

∣∣∣t2
t1
− d

dt

(
∂L
∂ÿ

)
dy

dα

∣∣∣t2
t1

+
∫ t2

t1

dy

dα

d2

dt2

(
∂L
∂ÿ

)
dt

= 0 − 0 +
∫ t2

t1

dy

dα

d2

dt2

(
∂L
∂ÿ

)
dt

What remains is:

dJ

dα
=

∫ t2

t1

(
∂L
∂y

− d

dt

∂L
∂ẏ

+
d2

dt2
∂L
∂ÿ

)
dy

dα
dt

= 0

The only way the above can be true for ar-
bitrary variation with α is for the quantity in
parenthesis to be zero. In other words:

d

dt

(
∂L
∂ẏ

)
=

∂L
∂y

+
d2

dt2

(
∂L
∂ÿ

)

It is easy to see what the pattern would be for
a lagrangian depending on yet higher derivatives
of y.

2.
A bead moves in a constant gravitational field
a = x̂g with an initial velocity |v| = v0, where g
and v0 are positive constants. It is constrained
to slide along a frictionless wire which has an un-
known shape y(x). (Notice that x̂ points down
and ŷ points to the right in this problem.)
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(a)
Show that the shape y(x) which minimizes the
bead’s transit time between two fixed points
(0, 0) and (X,Y ) is given by a set of parametric
equations

x = x0 + a(1 − cosφ)
y = y0 + b(φ− sinφ) ,

where φ is the parameter. This is the famous
brachistochrone problem. The solution is a cy-
cloid – the path of a dot painted on a rolling
wheel.
Solution:
The transit time, starting from (X,Y) and ending
up at (0,0), is given by:

T =
∫ 0

X

dt =
∫ 0

X

dl

v
=

∫ 0

X

√(
dy
dx

)2

+ 1

√
2g

√
E

mg + x
dx

where the denominator in the last step fol-
lows from conservation of energy, with E =

1
2mvo

2 − mgX. Calling the integrand L, we
apply the Euler equation:

d

dx

(
∂L
∂y′

)
=

∂L
∂y

= 0

d

dx


 y′√

y′2 + 1
√

E
mg + x


 = 0

y′√
y′2 + 1

√
E

mg + x
= C (a constant)

To show that the above parametric equations for
x(φ) and y(φ) are the solution to this D.E., we’ll
need the following:

y′ =
dy

dx
=

dy

dφ

dφ

dx
=

b

a

(1 − cosφ)
sinφ

Substituting this into the D.E. yields:

b

a

(1 − cosφ)

sinφ
√

b2

a2
(1−cos φ)2

sin2 φ
+ 1

√
E

mg + xo + a(1 − cosφ)
= C

(1 − cosφ)√
1 − 2 cosφ + cos2 φ + a2

b2 sin2 φ
√

E
mg + xo + a(1 − cosφ)

= C

If a = b and xo = − E
mg , then the above is true

for all φ, as it reduces to:

(1 − cosφ)√
2(1 − cosφ)

√
1 − cosφ

√
a

=
1√
2a

= C

which is a true statement.
(b)
In terms of v0, g, X, and Y , what are the values
of the constants x0, y0, a, and b which yield the
optimal trajectory? Give definite answers where
you can; otherwise provide equations which, if
solved, would yield those values. [Hint: see Hand
& Finch, problems 2.9 and 2.10.]
Solution:
Let’s say that, at φi, (x,y)=(X,Y), and at φf

(x,y)=(0,0). This, along with the conditions
that a=b and xo = E

mg from part (a), yields the

following equations:

X = −vo
2

2g
+ X + a(1 − cosφi)

Y = yo + a(φi − sinφi)

0 = −vo
2

2g
+ X + a(1 − cosφf )

0 = yo + a(φf − sinφf )

This is a set of four transcendental equations for
four unknowns: a, yo, φi, and φf .
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3.
Starting from a vertical position at rest, a solid
ball resting on top of a thin rod falls off.

While in contact with the rod, the ball rolls
without slipping. Using the method of Lagrange
undetermined multipliers, find the angle ψ at
which the ball leaves the rod (ψ ≡ 0 initially).
Solution:
Let’s pick as our coordinates ψ, the angle down
from the y-axis that the ball has rolled (y points
up), and r, the distance of the center of the
sphere from the thin rod. (So we’re working with
the ordinary polar coordinates of the center of
the sphere.) The equation of constraint is r = R,
where R is the radius of the sphere. Then the ki-
netic energy is T = 1

5mR2ψ̇2 + 1
2mr2ψ̇2 + 1

2mṙ2.
(The first term represents the rotation of the
sphere about its center, and the other two rep-
resent translations of the center of the sphere
in the tangential and radial directions.) The
potential energy is V = mgr cosψ. So

L = 1
2m

(
2
5R

2 + r2
)
ψ̇2 + 1

2mṙ2 −mgr cosψ

The Euler-Lagrange equation for r is

r̈ − rψ̇2 + g cosψ = λ

Use the equation of constraint to remove the r̈
from the above and replace r by the constant R:
λ = −Rψ̇2 + g cosψ. We want to find the an-
gle ψ� at which the force of constraint λ equals
zero: ψ̇2

� = (g/R) cosψ�. Let’s get rid of the ψ̇�.
Energy conservation says

7
10mR2ψ̇2 + mgR cosψ = mgR

Solve for ψ̇: ψ̇2 = 10g
7R (1− cosψ). Substitute into

the equation for ψ�, and you get

cosψ� = 10
17 , so ψ� ≈ 54◦.

4.
Consider a simple, plane pendulum consisting
of a mass m attached to a string of length l.
Only small oscillations need be considered. Af-
ter the pendulum is set into motion, the length
of the string is shortened at a constant rate
dl/dt = −α, where α > 0. (The string is pulled
through a small hole located at a constant posi-
tion, so the pendulum’s suspension point remains
fixed.) Compute the Lagrangian and Hamilto-
nian functions. Compare the Hamiltonian and
the total energy of the pendulum, and discuss
the conservation of energy for the system.
Solution:
The lagrangian is L = m

2 �̇2 + m
2 �2θ̇2 +mg� cos θ.

Use � = �0 − αt to write this in terms of the
variables (θ, θ̇, t):

L(θ, θ̇, t) =
1
2mα2 + 1

2m(�0 − αt)2θ̇2 + mg(�0 − αt) cos θ

The momentum canonically conjugate to the co-
ordinate θ is p = dL

dθ̇
= m(�0 − αt)2θ̇, so we can

write

H(θ, p, t) = pθ̇ − L

= 1
2m(�0 − αt)2θ̇2 − 1

2mα2 −mg(�0 − αt) cos θ

=
p2

2m(�0 − αt)2
− 1

2mα2 −mg(�0 − αt) cos θ

This is not the same as the total energy. (The
energy would have a + sign in the second term.)
The rules about hamiltonians say that H = E
if the generalized coordinates are related to
ordinary cartesian coordinates in a way that
doesn’t depend explicitly on t, and if there are
no velocity-dependent potentials. That first con-
dition isn’t satisfied here, so it’s OK that H �= E.
Energy is also not conserved in this system, since
whoever is pulling up on the string is doing work
on the system.
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5.
A particle of mass m and velocity v1 leaves a
semi-infinite space z < 0, where the potential en-
ergy is a constant U1, and enters the remaining
space z > 0, where the potential is a constant
U2.
(a)
Use symmetry arguments to find two constants
of the motion.
Solution:
The lagrangian for this problem is

L =
m

2
(
ẋ2 + ẏ2 + ż2

) − U(z) ,

where U(z) is the potential energy, which clearly
depends only on z. Applying the Euler-Lagrange
equation:

d

dt

(
∂L
∂ẋ

)
=

∂L
∂x

= 0

mẋ = constant

d

dt

(
∂L
∂ẏ

)
=

∂L
∂y

= 0

mẏ = constant

(b)
Use these two constants to obtain the new ve-
locity v2.
Solution:
By the constants of part (a), v2x = v1x and
v2y = v1y. Since the lagrangian does not depend
explicitly on time, we know that the total energy
is conserved as well:

1
2mv1

2 + U1 = 1
2mv2

2 + U2

m

2
(
v1x

2 + v1y
2 + v1z

2
)

+ U1

=
m

2
(
v2x

2 + v2y
2 + v2z

2
)

+ U2

m

2
v1z

2 + U1 =
m

2
v2z

2 + U2

v2z =

√
v1z

2 +
2
m

(U1 − U2)

We take the positive root, for if v2z were nega-
tive, then the particle would not travel into the
positive z space at all. Hence:

v2 = v1x î + v1y ĵ +

√
v1z

2 +
2
m

(U1 − U2) k̂

6.
The Lagrangian for a (physically interesting)
system is

L(ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, t) = 1
2I(ϕ̇

2 sin2 θ + θ̇2)

+ 1
2I3(ϕ̇ cos θ + ψ̇)2 −mgh cos θ ,

where (ϕ, θ, ψ) are Euler angles and (I, I3,mgh)
are constants.
(a)
Find two cyclic coordinates and obtain the two
corresponding conserved canonically conjugate
momenta.
Solution:
L is independent of ϕ and ψ, so they are cyclic.

∂L
∂ϕ̇

= Iϕ̇ sin2 θ + I3

(
ϕ̇ cos θ + ψ̇

)
cos θ

= pϕ (a constant)
∂L
∂ψ̇

= I3

(
ϕ̇ cos θ + ψ̇

)
= pψ (a constant)

(b)
Find a third constant of the motion.
Solution:
Since L does not depend explicitly on time, the
Hamiltonian is equal to the total energy, and is
thus conserved:

H =
∂L
∂ϕ̇

ϕ̇ +
∂L
∂ψ̇

ψ̇ +
∂L
∂θ̇

θ̇ − L

Inserting L and the other expressions from
above, and simplifying, yields:

H = 1
2I

(
ϕ̇2 sin2 θ + θ̇2

)
+

1
2I3

(
ϕ̇ cos θ + ψ̇

)2

+ mgh cos θ

= constant
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(c)
Using the results of (a) and (b), express θ̇2 as a
function only of θ and constants.
Solution:
From our expressions in (a) we find that

ϕ̇ =
pϕ − pψ cos θ

I sin2 θ

ψ̇ =
pψ

I3
− (pϕ − pψ cos θ) cos θ

I sin2 θ

Substituting this into our expression for H yields:

H = 1
2I

(
(pϕ − pψ cos θ)2

I2 sin2 θ
+ θ̇2

)

+ 1
2I3

(
pψ

I3

)2

+ mgh cos θ

Solve for θ̇2:

θ̇2 =
2H
I

− p2
ψ

II3
− 2mgh cos θ

I
− (pϕ − pψ cos θ)2

I2 sin2 θ

7.
The interaction Lagrangian for a system consist-
ing of a relativistic test particle of mass m and
charge e moving in a static electromagnetic field
is

L(x,v, t) = −mc2
√

1 − v2

c2
+ ev ·A− eφ ,

where x is the particle’s position, v is its velocity,
φ(x) is the electrostatic potential (E = −∇φ),
A is the (static) magnetic vector potential
(B = ∇×A), and c is the speed of light.

(a)
Write down the canonical momenta (p1, p2, p3)
which are conjugate to the Cartesian coordinates
(x1, x2, x3).
Solution:

pi =
∂L
∂vi

=
mvi√
1 − v2

c2

+ eAi

(b)
Compute the Hamiltonian H(x,v, t).
Solution:

H = pivi − L

=
mv2√
1 − v2

c2

+ ev ·A

−
(
−mc2

√
1 − v2

c2
+ ev ·A− eφ

)

=
mc2√
1 − v2

c2

+ eφ

(c)
Re-express H(x,v, t) as the function H(x,p, t).
Solution:
From part (a), we can solve for the v’s in terms
of the p’s:

vi =
c(pi − eAi)√

m2c2 + (p− eA)2

Inserting this into our answer to (b):

H =
mc2√

1 − 1
2

(
c2 (p−eA)2

m2c2+(p−eA)2

) + eφ

=
√

m2c4 + (p− eA)2c2 + eφ

(d)
Show that H is conserved. Is it equal to

E =
mc2√
1 − v2

c2

,

the total (relativistic) energy of the test parti-
cle? Explain.
Solution:
Since L does not depend explicitly on t, dH

dt = 0,
and so H is conserved. However, H is not equal
to the above expression for relativistic energy.
This is because the above expression is derived
assuming no external fields, such as the electric
field generated by the φ which appears in our H.
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8.
Consider f and g to be any two continuous func-
tions of the generalized coordinates qi and canon-
ically conjugate momenta pi, as well as time:

f = f(qi, pi, t)
g = g(qi, pi, t) .

The Poisson bracket of f and g is defined by

[f, g] ≡ ∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
,

where summation over i is implied. Prove the
following properties of the Poisson bracket:
(a)

df

dt
= [f,H] +

∂f

∂t

Solution:

[f,H] =
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
=

∂f

∂qi

dqi

dt
+

∂f

∂pi

dpi

dt

where the last step comes from Hamilton’s equa-
tions of motion. By the chain rule,

df

dt
=

∂f

∂qi

dqi

dt
+

∂f

∂pi

dpi

dt
+

∂f

∂t

Compare these last two equations, and you see
that df/dt = [f,H] + ∂f/∂t.

(b)
q̇i = [qi,H]

Solution:

[qi, H] =
∂qi

∂qk

∂H

∂pk
− ∂qi

∂pk

∂H

∂qk

But ∂qi/∂pk = 0 (p’s and q’s are independent
variables), and ∂qi/∂qk = δik. So only one term
in the sum over k is nonzero:

[qi, H] = δik
∂H

∂pk
=

∂H

∂pi
= q̇i

(by Hamilton’s equations again.)

(c)
ṗi = [pi,H]

Solution:
Just like part (b): [pi, H] = ∂pi

∂qk

∂H
∂pk

− ∂pi

∂pk

∂H
∂qk

=
−δik

∂H
∂qk

= −∂H
∂qi

= ṗi.

(d)
[pi, pj ] = 0

Solution:
[pi, pj ] = ∂pi

∂qk

∂pj

∂pk
− ∂pi

∂pk

∂pj

∂qk
. But each term in this

expression contains a ∂p/∂q, and that’s zero. So
the whole expression is zero.

(e)
[qi, qj ] = 0

Solution:
Same as part (d): Each term in the Poisson
bracket contains a ∂q/∂p, which is zero.

(f)
[qi, pj ] = δij ,

where H is the Hamiltonian. If the Poisson
bracket of two quantities is equal to unity,
the quantities are said to be canonically con-
jugate. On the other hand, if the Poisson
bracket vanishes, the quantities are said to com-
mute.
Solution:

[qi, pj ] =
∂qi

∂qk

∂pj

∂pk
− ∂qi

∂pk

∂pj

∂qk
= δikδjk −0 ·0 = δij

(g)
Show that any quantity that does not depend
explicitly on the time and that commutes with
the Hamiltonian is a constant of the motion.
Solution:
“Constant of the motion” means df/dt = 0, so
what we need to show is that if [f,H] = ∂f/∂t =
0, then df/dt = 0. But that follows immediately
from part (a), by simply substituting for [f,H]
and ∂f/∂t.


